On some second maximal subgroups of non-solvable groups
نویسندگان
چکیده
We call a group $G$ belongs to the class of groups $S_{p}'$, if for every $pd$-chief factor $A/B$ $G$, $((A/B)_{p})'=1$. In this paper, we investigate influence some second maximal subgroups which are related non-$c_{p}$-normal on structure $S_{p}'$.
منابع مشابه
On some maximal subgroups of unitary groups
The maximality of certain symplectic subgroups of unitary groups PSUn(K), n ≥ 4, (K any field admitting a non–trivial involutory automorphism) belonging to the class C5 of Aschbacher is proved. Furthermore some related geometry in the case n = 4 and K finite is investigated. Mathematics Subject Classification (2002): 20G40, 20G28
متن کاملTriple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملSome Maximal Subgroups of Infinite Symmetric Groups
THIS paper concerns maximal subgroups of symmetric groups on infinite, usually countable, sets. Our main aim is to give examples of maximal subgroups which could claim to be almost stabilisers of familiar combinatorial structures. We emphasise that maximal subgroup always means maximal proper subgroup. Throughout this paper, Cl will denote an infinite set, usually countable. The power set of Q ...
متن کاملThe number of Fuzzy subgroups of some non-abelian groups
In this paper, we compute the number of fuzzy subgroups of some classes of non-abeilan groups. Explicit formulas are givenfor dihedral groups $D_{2n}$, quasi-dihedral groups $QD_{2^n}$, generalized quaternion groups $Q_{4n}$ and modular $p$-groups $M_{p^n}$.
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hacettepe journal of mathematics and statistics
سال: 2023
ISSN: ['1303-5010']
DOI: https://doi.org/10.15672/hujms.1106486